

うぶんちゅ! まがじん ざっぱ〜ん♪ vol.8【体 験版】

team zpn 著

2018-06-24 版 team zpn 発行

表紙イラスト:よかぜ 装幀:team zpn

目次

第1章	Ubuntu ではじめる楽しいゼミ運営	1
1.1	メッセージングの悩み	1
1.2	LINE をつかったゼミ運営の問題点.................................	1
1.3	そこで Mattermost	2
1.4	Mattermost Server のインストール	2
1.5	ゼミでの運用....................................	4
1.6	問題は解決したか?	5
第2章	ポメラ DM200 に Ubuntu をインストールする	7
2.1	ポメラのハードウェア仕様....................................	7
2.2	バックアップと Debian のインストール	8
2.3	Ubuntu Base のカスタマイズ	8
2.4	Ubuntu 用 SD カードの準備	13
2.5	記動直後の設定	14
$\frac{2.6}{2.6}$	普段の利用方法	15
2.0 2.7	出メラカーネルのカスタマイズ	15
2.1		10
第3章	Boomaga を使って PDF を小冊子印刷する方法	17
3.1	ピンチは突然訪れる....................................	17
3.2	概要	18
3.3	インストール	18
3.4	印刷	19
3.5	印刷後	23
3.6	Ubuntu に対応したレーザープリンター	23
第4章	Nano Pi NEO で作成するテレビ視聴環境	24
41	释緯	24
42	必要なもの	24
4.3	armhian $\mathcal{O}\mathcal{A} \vee \mathcal{A} \wedge \mathcal{A}$	25
1 .0 Л Л	PV-S1UD の初期設定	26
	TASTOD の初期設定 ····································	20
4.0		21 90
4.0	祝 ^w 現の金帽 · · · · · · · · · · · · · · · · · · ·	20
4.7	Chinachu との連携	29
第5章	いつでも始められる mpv	31
5.1	mpvって?	31
5.2	インストール	31
5.3	使ってみよう	32
5.4	カスタマイズ	33
5.5	その他	35
5.6	おわりに	38
笛 6 音	らくごうさんちのノート PC 事情	20
オマ子 61	してこうこれののシートーで手頂 最近の Lat's nota	30
0.1 6 9	取 <u>だ</u> ッ Eor 3 1015	10
0.4	ノニドハノコノを見い自んに	40
0.3	- 石クリックかでさない	40

6.4	Type-C から映像端子への変換	41
6.5	充電のあれこれ	42
USB T	ype-C と USB PowerDelivery と Thunderbolt 3	43
6.6	まとめ	43
第7章	Ubuntu で心理学実験	44
7.1	はじめに	44
7.2	PsychoPyとは	44
7.3	なぜ Ubuntu なのか	45
7.4	実験環境の構築....................................	45
7.5	インストールの手順	45
7.6	もしかしたら	46
7.7	デモコード	46
7.8	おまけ ~spyder と jupyter notebook と jupyter lab~ \dots	47
第8章	ゲストページ	49
8.1	国際イベントの招致を手伝ってみましたよ..............................	49
8.2	技術書典 4 で冊子版『ざっクリわかる Ubuntu 18.04 LTS』を頒布できなかった顛末	54
あとがき		58
著者紹介		59
「うぶんち	「ゅ! まがじん ざっぱ~ん♪」 バックナンバー	60

第1章 Ubuntu ではじめる楽しいゼミ運営

おしえたかし (mstdn.jp/@oshie)

大学のおしごとをしていて悩ましいのが、ゼミ生さんとのコミュニケーションです。Ubuntu と Mattermost で、オンラインでやりとりする方法を模索してみました。

1.1 メッセージングの悩み

もともと、オンラインでのゼミ生とのコミュニケーションには携帯電話のメールを使っていました。 メールを送る時間帯にさえ気をつければ、たいていの場合メールで連絡を取ることができました。

ところが最近では、学生さんはメールをすっかり使わなくなってしまいました。その理由は、迷惑 メールがあまりに多いことと、LINE が普及したことと筆者は見ています。メールを送ってもそもそも 届かないことも多いです。おそらく、迷惑メールが多いのでアドレスを変更するものの、常用するのは LINE であり、メールはそもそも使っていないので新しいアドレスを連絡しないというようなことが多 いのではないかと思います。メールの送り方を知らない学生¹¹も増えました。余談ですが、LINE はプ ロプライエタリであり、迷惑メールのせいで自由で開かれた手段が使われなくなるというのはきわめて 不幸なことだと思います。

1.2 LINE をつかったゼミ運営の問題点

そこで筆者もしぶしぶ LINE を導入し、ゼミの LINE グループを作成して、各種連絡をそこに流す ようにしました。

LINE は以下の点で優れたメッセージングサービスです。

- デファクトスタンダード。誰でも使っているので、インストールやアカウント作成等で手間取らない。
- 2. 豊富なスタンプ。筆者は孤独のグルメのスタンプ²が好きです(どうでもいい)。
- 豊富(すぎる)機能。たとえば、LINE スケジュール⁻³は、ゼミの飲み会を設定するとき等に重宝 します。

LINE で連絡がすぐに取れるようになって、これはこれでよかったのですが、弊害もいくつか出てきました。以下に5つの問題点を挙げます。

1.2.1 1. 議論が成立しない

LINE のグループには返信機能がありません。そのため、各メンバーの各発言が、誰のどの発言に対 するコメントなのかがわかりません。会話の流れの中に複数のトピックがある場合、誰が何の話をして いるのかさっぱりわからず、とてもカオスなことになってしまいます。また LINE にはスタンプがあ り、スタンプは議論の文脈を壊してしまいます。スタンプそのものはとてもおもしろく、筆者もプライ ベートでよく使いますが、スタンプで埋めつくされると何の話だったかさっぱりわからなくなってしま います。

というか、世の人はよくこんな不便なサービスでやりとりできますね……。大人でも混乱するのに、 子ども同士でこんなのを使ってたら LINE いじめが起こるのも必然な気がしますが。

^{*1} https://twitter.com/oshie/status/552401816705826816

^{*2} https://store.line.me/stickershop/product/8506/ja

^{*&}lt;sup>3</sup> https://schedule.line.me/

1.2.2 2. 強力すぎる通知

LINE のデフォルトの設定では、発言ごとに通知が届きます。通知の方法も押しつけがましいものが あり、スマートフォンの画面がオフになっていても、別のアプリを開いていても、メッセージがポップ アップされます。これはかなり強力な通知ルールだと思います。必ずしも通知の必要のない、どうでも いい発言も、このような方法で通知されてしまいます。

ゼミのグループとはいえ、学生間の交流手段の1つとして、しょーもない雑談で盛り上がってもよい と思うのですが、このような事情からか、ほとんど雑談が発生しません。筆者からの連絡事項ばかりが 流れるグループになってしまっています。

1.2.3 3. 書式の設定ができない

筆者のゼミでは統計解析を行うことが多く、R⁴⁴のコードレビューの機会も多いです。LINE は書式 の設定ができないため、コードをペーストされてもとても見づらいものがあります。スマートフォンで 撮影した写真を送ってくる学生さんもいましたが、確認のためいちいち打ち直さなければならず、きわ めて非生産的です。

1.2.4 4. Ubuntu での使用

Ubuntu で LINE を使う場合、Chrome(ium)の拡張機能を使うか、Wine で Windows 版のクラ イアントを動かすかの 2 択になると思います。Wine は日本語入力で苦労することも多いですし、な るべく避けたいところです。Chrome(ium)の拡張機能は一工夫すれば Dock に登録できる⁵ようです が、そもそも筆者のデフォルトブラウザーは Firefox であり、わざわざ LINE のためだけに消費リソー スを増やしたくありません。

PC 上ではブラウザーで利用できれば、上記のような問題は起こりません。というか、独自のアプリ を入れないと使えないサービスとか不便すぎるでしょ……。

1.2.5 5. プロプライエタリ

筆者のゼミの教育方針⁶の1つは「自由で開かれている風土を目指すこと」であり、プロプライエタ リな LINE を使うことは一貫性に欠けます。可能な限り、FLOSS を使いたいところです。

1.3 そこで Mattermost

そこで代替サービスとして、Mattermost⁷に白羽の矢を立てました。Mattermost は Slack⁸の FLOSS クローンです。Slack を利用してもよかったのですが、Slack はプロプライエタリです。上記 1.~5. すべての問題を解決するためにも、FLOSS である Mattermost を使用することにしました。

1.4 Mattermost Server のインストール

筆者は ServersMan@VPS Entry プランで Ubuntu 14.04 LTS 環境を利用しています。 Mattermost サーバーを以下の要領でインストールしました。といっても、マニュアル⁹どおりで すが。16.04 以上の環境の方は別のガイド^{*10}を参照してください。また「password」には適切な文字

^{*4} https://www.r-project.org/

^{*&}lt;sup>5</sup> https://qiita.com/k-seta/items/08c1600d6993104f258c

^{*6} http://oshie.edu.yamaguchi-u.ac.jp/index.php/%E6%95%99%E8%82%B2%E6%96%B9%E9%87%9D/

^{*7} https://about.mattermost.com/

^{*8} https://slack.com/intl/ja-jp

^{*9} https://docs.mattermost.com/install/install-ubuntu-1404.html

^{*10} https://docs.mattermost.com/install/install-ubuntu-1604.html

列を、「hostname」には適切なホスト名を設定してください。

```
$ sudo apt-get install mysql-server-5.6
$ mysql -u root -p
mysql> create user 'mmuser'@'%' identified by 'password';
mysql> create database mattermost;
mysql> grant all privileges on mattermost.* to 'username'@'%';
mysql> exit
$ wget https://releases.mattermost.com/4.6.1/mattermost-4.6.1-linux-amd64.tar.gz
$ tar xvf mattermost-4.6.1-linux-amd64.tar.gz
$ sudo mk dir /opt/mattermost/data
$ sudo useradd --system --user-group mattermost
$ sudo chown -R mattermost:mattermost /opt/mattermost
$ sudo chown -R g+w /opt/mattermost
```

「sudo vim /opt/mattermost/config/config.json」などとして、config.json のうち 2 箇所を設 定します。まず"DriverName"は"mysql"に設定してください。次に"DataSource"を次のように変更し ます。このうち password は先ほど設定したものと同じです。

"mmuser:password@tcp(localhost:3306)/mattermost?charset=utf8mb4,utf8&readTimeout=30s&writeTimeout=30s"

Upstart のデーモンとして登録しておきましょう。「sudo vim /etc/init/mattermost.conf」など として以下の内容を入力します。

```
start on runlevel [2345]
stop on runlevel [016]
respawn
limit nofile 50000 50000
chdir /opt/mattermost
setuid mattermost
exec bin/platform
```

「sudo start mattermost」してサーバーを起動します。ブラウザーで http://hostname:8065/を 開いてみましょう。

指示にしたがってチームとユーザーを作成します。ログインしたら、左ペインのハンバーガーメ ニュー(三)をクリックし、[Account Settings]を開きましょう。[Display] → [Language] とクリッ クし、[日本語] を選んで [Save] をクリックします。これでメニューが日本語で表示されます。次に、 同じくハンバーガーメニューから [システムコンソール] を開きましょう。

- ・ [全般] セクション内の [設定]
 - [サイト URL] を [http://hostname:8065] に。

- 左下の[保存]をクリックしておきます。

- ・ [全般] セクション内の [言語]
 - [デフォルトのサーバー言語] を [日本語] に。
 - [デフォルトのクライアント言語] を [日本語] に。
 - 左下の[保存]をクリックしておきます。
- ・ [通知] セクション内の [電子メール]
 - [通知電子メールを有効にする] を [有効] に。
 - [通知電子メールでの表示名] を [No-Reply] に。
 - [通知電子メールでの電子メールアドレス]を適切なメールアドレスに。筆者は面倒なので筆 者の大学のメールアドレスを入力しています。
 - [SMTP サーバー] を入力。筆者は面倒なので筆者の大学の SMTP サーバーを利用していま す。あわせて [SMTP サーバーポート]、[SMTP 認証を有効にする]、[SMTP サーバーの

第2章 ポメラ DM200 に Ubuntu をインストールする

柴田充也

「理想のモバイル端末」は有史以来人類が追い求めている夢のひとつです。粘土板やパピルス・ 竹簡・木簡が紙になり、電子デバイスへと移行したあとも、大きな画面と小さく軽い筐体、高速 な処理能力と長い動作時間という相反する目的を常に追い求めてきました。人によって重視する ポイントが異なることから、技術が進歩するごとにさまざまなデバイスが現れては消えていま す。今回はそんなデバイスの「現時点における解」のひとつであるポメラ DM200 に Ubuntu 18.04 LTS をインストールしてみましょう。

2.1 ポメラのハードウェア仕様

ポメラシリーズはキングジムが販売する「テキスト入力専用マシーン」です。無理のないキーピッチ と配列のキーボード、高速な起動、シンプルなメモアプリと最強の日本語入力システム ATOK を擁す ることで、2008 年発売の初代 DM10 から 2017 年の DM200 や 2018 年の DM30 に至るまで、主 に執筆を生業とするユーザーに対して大ヒットするシリーズに成長しました。

「テキスト入力専用マシーン」と名乗っていることからもわかるように、デバイスの目的を「執筆」に 絞っているため、一般的なモバイルデバイスとは趣きを異にしています。しかながら「執筆」に絞って いるからこそ、「物書き」にとっては非常に魅力的なデバイスになっているのです。

DM200⁻¹は 2017 年に発売された液晶型ポメラシリーズの最新作です。DM200 では大幅に機能が 拡充され(あわせてサイズも大きくなり)、Wi-Fi を利用したネットワーク関連の機能も搭載されまし た。もちろんネットワーク対応はあくまで執筆原稿の同期・転送・バックアップが目的であり、ウェブ ブラウザーのような時間を浪費する悪魔は搭載されていません。他にも先代のポメラと同様の特徴も継 承しています。

- ・高速な起動とシャットダウン
- ・起動したらとにかく問答無用でエディターが起動する
- ・かな漢字変換システムとして ATOK がプリインストール済み
- ・横17mm ピッチのフルキーボード
- ・SD カードへの保存

利用者から見ると「高機能化・大型化したポメラ」なのですが、ハードウェア・ソフトウェアを見る と実はただの ARM ベースの Linux 端末だったりします。

- Rockchip RK3128
- ・ARMv7 1.2GHz クアッドコア(約 900MHz までに制限)
- 512MiB RAM
- ・eMMC NAND 4GiB(ブートローダー・OS・ファームウェア領域)
- microUSB ポート(受電可・給電不可)
- ・SD カードスロット
- Wi-Fi IEEE802.11b/g/n (2.4GHz)
- Bluetooth 4.0 + EDR
- ・7インチ 1024×600 液晶
- ・ブートローダー: U-Boot 2014.10
- \cdot OS : Linux 3.10

ポイントは OS として Linux カーネルを使っていること、そして書き換え可能な NAND 領域に OS

^{*1} http://www.kingjim.co.jp/pomera/dm200/

がインストールされていることです。

カーネルが Linux である以上、ユーザランドさえ差し替えれば一般的な Linux ディストリビュー ションを動かせる可能性が高くなります。さらに NAND が書き換え可能状態であるならば、カーネル を差し替えることすら可能になります。

2.2 バックアップと Debian のインストール

Linux が動いているという話から、一般的な Linux コンソール端末として動かせないか調査し、その成果をまとめてくれたのが@ichinomoto^{*2}さんです。

しかもバックアップスクリプトと Debian のインストーラーまで公開されているため、16GB 以上 の SD カードを用意すれば誰でも簡単に各自の責任においてポメラをポメラ OS と Debian のデュア ルブートにできます。

Debian 用のカーネルと initramfs はリカバリー領域にインストールするため、普通に電源を入れれ ばポメラとして動作し、Alt+右 Shift+電源ボタンで起動すれば Debian が起動します。つまりひと 粒で二度美味しいマシーンになるのです。

さて本章ではこのインストーラーをベースに、ユーザーランドのみを Ubuntu 化します。つまり カーネルと initramfs は上記 Debian 版をそのまま流用します。Ubuntu 化しなければならない理 由は特にありません。単に普段使っているのが Ubuntu だから Ubuntu にしたいというだけです。 GNOME Shell が十分な速度で動くとは言い難い状況なので、デスクトップとして使うのであればむ しろ Debian のままで十分でしょう。ここではあくまで CLI としての Ubuntu を用意する方法の説明 に特化します。よってデスクトップに必要な設定などは飛ばしているのでご注意ください。

ちなみにカーネルは、Debian 版で使っているカーネルというだけで、Debian 公式のカーネルでは ありません。Rockchip がメーカーに提供し、キングジムがカスタマイズしたカーネルにいくつかの修 正とコンフィグ有効化を行ったカーネルです。

バックアップと Debian 化の方法については@ichinomoto さんの「Linux on Pomera DM200 人柱版 その 2^{*3}」を参照してください。その技術的な詳細は「Linux on Pomera DM200^{*4}」が参考 になります。

以降はオリジナルの eMMC NAND のバックアップを行い、Debian 化が完了し、一度でも Debian で正しく起動できたことを前提とします。なお、Debian 版の SD カードのいくつかのデータを流用 するため、Ubuntu 化にあたってはもう一枚 16GB 以上の SD カードを用意してください。ただし Ubuntu の CLI 環境だけであれば 8GB でも間に合います。

Ubuntu 化に当たって実際に必要なのは Debian 化したルートファイルシステムの/opt ディレクト リ以下だけです。

2.3 Ubuntu Base のカスタマイズ

ここからは Ubuntu 用 SD カードにインストールするルートファイルシステムを作成します。とり あえず PC 上の任意のディレクトリ以下に作成し、最後に SD カードに保存します。

Ubuntu Base は組み込み機器向けに提供されている最小のルートファイルシステムです。今回は Ubuntu Base をベースに、必要なソフトウェアをインストールしていきましょう。まずは Ubuntu Base のダウンロードと展開です。

```
$ mkdir ~/pomera/ && cd $_
```

\$ wget http://cdimages.ubuntu.com/ubuntu-base/releases/18.04/release/ubuntu-base-18.04-base-armhf.tar.gz
\$ mkdir rootfs

\$ sudo tar xvf ubuntu-base-18.04-base-armhf.tar.gz -C rootfs/

^{*2} https://twitter.com/ichinomoto

^{*&}lt;sup>3</sup> https://www.ekesete.net/log/?p=8940

^{*4} https://ekesete.booth.pm/items/616812

2.3.1 rootfs への chroot

rootfs ディレクトリ以下を仮想的なルートファイルシステムとして扱い、apt コマンドでパッケー ジをインストールします。

一番簡単な方法は chroot コマンドを使うことです。ただしホスト PC のアーキテクチャーが amd64 の場合、そのままではポメラ用の armhf アーキテクチャーのパッケージをインストールできません。 そこで QEMU を用いて chroot 時にエミュレーションを行います。特に難しいことをするわけではな く、qemu-user-static パッケージにある qemu-arm-static コマンドを chroot 先の usr/bin 以下に コピーするだけです。

\$ sudo apt install qemu-user-static
\$ sudo cp /usr/bin/qemu-arm-static rootfs/usr/bin/

さらに chroot 先でネットワークが動くよう設定ファイルもコピーした上で、chroot コマンドを実行します。

\$ sudo cp /etc/resolv.conf rootfs/etc/resolv.conf \$ sudo mount -t proc /proc rootfs/proc \$ sudo ln -s ../proc/mounts rootfs/etc/mtab \$ sudo mount --rbind /dev rootfs/dev \$ sudo mount --make-rslave rootfs/dev \$ sudo mount -t sysfs -o nosuid, nodev, noexec sysfs rootfs/sys \$ sudo ln -s /dev/shm rootfs/run/shm \$ sudo chroot rootfs/

2.3.2 パッケージのインストールと更新

最初にパッケージリポジトリを設定します。Ubuntu Base の初期状態では universe/multiverse が無効化されているので有効化しておきましょう。

sed -i "s/^# ¥(deb .*bionic.*verse.*¥)/¥1/g" /etc/apt/sources.list

また Ubuntu Base ではできるだけイメージサイズを小さくすることを目的として、man ページや changelog ファイルなどをインストールしないように dpkg コマンドの設定が行われています。通常の CLI 環境だと man ページが存在しないのは不便なので、その設定も解除しておきましょう。

/usr/local/sbin/unminimize

設定が解除されると同時に ubuntu-minimal パッケージがインストールされます。これにより less や passwd など最低限のコマンドなどがインストールされます。制限の強い環境で生活することに快感 を覚えるような人でない限りは必須と思ってください。ちなみに ubuntu-standard パッケージもイン ストールすることが一般的ではありますが、サイズが大きくなりがちなので実機上でインストールする ことをおすすめします。

次にパッケージリストを更新し、最新のアップデートを適用した上で、必要なパッケージー式をイン ストールします。

apt update

[#] apt full-upgrade

[#] apt install -y wpasupplicant iw wireless-tools fbterm fonts-noto-cjk fonts-ricty-diminished ¥
 uim-fep uim-mozc language-selector-common language-pack-ja

第3章 Boomaga を使って PDF を小冊子印刷する方法

いくや

今回は簡単な操作で PDF を小冊子印刷する方法を紹介します。

3.1 ピンチは突然訪れる

皆さんも同人イベントに出展した際に印刷所に発注した冊子が見当たらず、それを見本誌に使おうと 目論んでいたので別途用意しておらず、結局見本誌なしでダウンロード版の販売を行った経験があると 思います。

……いや、ないわ。これはないわ。改めて書いてみて思ったわ。

この話はひとまずさておいて、そんな場合でも小冊子印刷を行うことができれば見本誌をサクッと用 意することができます。ただ、Ubuntu で小冊子印刷をしようとするとなかなか難しいのです。

Linux 版 Adobe Reader が生きていた頃は機能としてあったのでわりと簡単にできました。 LibreOffice Writer にも小冊子印刷機能はありますが、異なった用紙サイズに変更したりとか、 そもそも PDF を印刷するような機能はなく、一から書いたもののみ対応します。psbook とかいうコマ ンドでなんとかできるらしいというのはわかるのですが、この手のことをコマンドラインでやるという のは直感的ではないのでできれば避けたいです。

Evince (ドキュメントビューアー)のヘルプでも一応説明されていますが (図 3.1)、

	n ページの小冊子 Evince ドキュメントビューアー		k Q			
2、印刷 » 小冊子の印刷、両面印刷が可能なプリンタ	7— »					
n ページの小冊子						
☆ nは、4 の倍数です。						
PDF ドキュメントのページ数が 4 の倍数でない場合、4 す。そのために次のようなことができます。	↓の倍数にするために適切な数 (1、2 また	とは 3) の空白ペー	-ジを追加	する必要が	がありま	
1. LibreOffice Writer を利用して空の PDF を作成	えします。					
2. PDF-Shuffler を使って、PDF ドキュメントに空の	ページを最後に置くように結合します。					
 ファイルトロ刷をクリックします。 全般タブを選択します。 範囲の下にあるページを選択します。 次の履量ペページ要与を入力します。 ページ数分入力するまで、1・4.5,6,n-5. ページの設定タブを選択します。 レイアウトの下にある両面印刷というオブションで 	, n-6, 7, 8, n-7, n-8, 9, 10, n-9, n-10, 短辺 (折り返し)を選択します。	11, 12, n-11				
段組み印刷というオブションで 2 を選択しま9。 ページの順番というオブションで左から右へを選	択します。					
4. 印刷をクリックします。						
詳細 両面印刷が可能なプリンター						_

このドキュメントについて

図 3.1: Evince のマニュアルにある小冊子印刷の方法

手で計算しろと申すか……。 というわけで、しょうがないので Windows の Adobe Reader から印刷するという始末でした。

3.2 概要

もっといい方法はないかと長年(やや誇張)検索していたのですが、ついに見つけました。それが Boomaga¹です。

今回は使用しないものの、Ubuntu のリポジトリにもある著名(たぶん)なツールなのに今までどう して引っかかってこなかったのかが謎です。まぁ筆者の検索キーワードが悪かったのでしょうけど。

Boomaga は「メタプリンター」として動作するところが特徴です。アプリケーション(通常はド キュメントビューアーである Evince か Atril でしょう)^{*2}でプリンターとして Boomaga を指定し、各 種設定を行います。その設定の中には実際に印刷するプリンターも含まれるので、アプリケーションも プリンターも自由に選べるというわけです。CUPS のしくみをうまく使っていて、その発想に惚れ惚れ とします。

御託はこのぐらいにして、実際に印刷してみましょう。

対象の Ubuntu のバージョンは 16.04 LTS、17.10、18.04 LTS です。今回は 18.04 LTS で動作 を確認しました。

サンプルの PDF は『ざっクリわかる Ubuntu 18.04 LTS』³を使用します。

3.3 インストール

Boomaga は前述のとおり Ubuntu のリポジトリにもありますが、バージョンが古いので PPA⁻⁴か らインストールします。次のコマンドを実行してください。

\$ sudo add-apt-repository ppa:boomaga
\$ sudo apt install boomaga

t the ap the area area and

今までは add-apt-repository コマンド実行後に「apt update」コマンドの実行が必要でしたが、 18.04 LTS からは自動実行されるようになったので省略できます。そんなわけで 16.04 LTS の場合は 手動で実行してください。

インストール完了後、Boomaga がプリンターとして追加されます(図 3.2)。

図 3.2: うちのプリンター事情

*3 http://zapppaaan.freepub.jp/article/183055647.html

^{*1} https://github.com/Boomaga/boomaga

^{*&}lt;sup>2</sup> Web ブラウザーからたくさんの Web ページを印刷するにも使えそうですが、それって辛いお仕事の検収用……うっ 涙が……

^{*4} https://launchpad.net/~boomaga/+archive/ubuntu/ppa

3.4 印刷

では実際に印刷してみましょう。まずはドキュメントビューアーで PDF を開き、PDF のプロパティ を確認します。というのも、最初の段階で用紙サイズ(ページサイズ)の指定を間違えると余白が多す ぎる小冊子が出来上がってしまいます(図 3.3)。

	プロパティ 😣
全般 フォント	
タイトル:	ざっクリわかるUbuntu 18.04 LTS
ファイル名:	file:///home/ikuya/ダウンロード/ zapppaaanspecial1.pdf
サブタイトル:	なし
作者:	あわしろいくや/team zpn
キーワード:	なし
PDF 作成ツール:	LuaTeX-1.0.4
PDF の作成者:	LaTeX with hyperref package
作成日時:	2018年04月08日 16時56分05秒
変更日時:	2018年04月08日 16時56分05秒
フォーマット:	PDF-1.5
ページ数:	46
表示の最適化:	いいえ
セキュリティ:	いいえ
ページサイズ:	B5 (JIS) の縦置き (182 x 257 ミリ)
サイズ:	6.9 MB

図 3.3: PDF のプロパティ

ページサイズは B5(JIS) であることがわかりました。B5(ISO) と B5(JIS) で微妙にサイズが違うと かトラップですよね……。

それはさておき、いよいよ印刷してみます。選択するプリンターは「Boomaga」です。(図 3.4) 「ページの設定」タブを開き、「用紙サイズ」を「B5(JIS)」にします。(図 3.5)

第4章 Nano Pi NEO で作成するテレビ視聴環境

ryunuda(@ryunuda)

超小型評価ボードである Nano Pi NEO¹を使用してテレビ視聴環境を構築した記録です。

図: 視聴環境

4.1 経緯

現行使用しているファイルサーバ兼録画サーバのハードウェア (HP MicroServer) 寿命が気になっていて、NAS へのリプレースを検討していました。

NAS へのリプレースに関して、録画サーバ機能に関しては別な機器へ移動する必要があります。こ こで PC を使うことは消費電力 (というより電気代) の観点から得策ではないので、ARM ボードを利用 した環境を構築したいと考えていました。

以前、PCIe を持つ ARM ボードである HummingBoard と PT3 でチューナサーバを構築したので すが、HummingBoard の発熱が大きいことや、PT3 自体が終息していることもあり移行に踏み切れ ませんでした。

何か別な方法がないかを調べていたところ、PX-S1UD²というチューナが、USB 接続で、かつ、 2018/06 時点でも販売中であり、また、Raspberry Pi を始めとした ARM ボードと組み合わせた 作例も何件か見かけたので PT3 の代替として良さそうだと感じました。そこで、PX-S1UD と ARM ボードを利用したチューナ環境を作成する方向で検討を始めました。

使用する ARM ボードとして Raspberry Pi ではフットプリントが大きいと感じたので、何かもっ と小さいものがないかと調べて見たところ、秋葉原の秋月電子でたまたま Nano Pi NEO を発見し ました。Nano Pi NEO の大きさは 40mmx40mm で、これならば PX-S1UD の長さを含めても Raspberry Pi の本体と同程度の大きさで環境が構築できそうでした。それでは、実際に実現できるの か試してみようということで、Nano Pi NEO と PX-S1UD の接続を実験することにしました。

4.2 必要なもの

Nano Pi NEO と PX-S1UD を接続する実験をするために以下のものを用意しました。

- Nano Pi NEO 512MB
 - 256 MB メモリ版もありますが、リソースが足りなくなる可能性が高いので 512 MB メモリ版を使用します。

^{*1} http://www.friendlyarm.com/index.php?route=product/product&product_id=132

^{*2} http://www.plex-net.co.jp/product/px-s1udv2/

- Nano Pi NEO 2 を選ばないように注意が必要です。NEO 2 は 64bit arm で、ARM 64bit kernel 付属のドライバにはバグ^{・3}があり、PX-S1UD の認識に失敗します。

・ヒートシンク

- 専用のものでなくとも、SoC に貼り付けられる 1.5~2.0cm 角のものでも構わないと思い ます。ヒートシンクを設置しないことは SoC の発熱を考えるとおすすめできません。
- ・USB AC アダプター/電源用 USB ケーブル
- PX-S1UD x2
- IC カードリーダー (NTT SCR3310-NTTCom)
 筆者が予備として所持していたものを使用しました。
- ・同軸ケーブル
- ・分配器
- ・microSD カード (16GB; class10)

- Nano Pi NEO の OS インストール用です。

- ・ OS インストール用 PC (Ubuntu)
 - 今回は Ubuntu 17.10 Desktop を使用しました。Etcher⁴などのイメージを SD カードへ 焼けるツールが使えれば OS は問いません。
- ・ USB シリアル変換ケーブル⁻⁵
 後述の通り、ない場合の回避策もありますので必須ではありません。

4.3 armbian のインストール

armbian^{•6}は ARM ボード向けの Debian/Ubuntu ベースのディストリビューションです。Nao Pi NEO にも対応しています。

実際に Nano Pi NEO へ armbian をインストールしていきます。まず armbian から Xenial 用の image をインストール用 PC へダウンロードします。ダウンロードが完了したら、7z を展開するため の p7zip-full をインストールして、7z ファイルを展開します。

```
$ sudo apt install p7zip-full
$ 7z e Armbian_5.38_Nanopineo_Ubuntu_xenial_next_4.14.14.7z
$ ls
Armbian_5.38_Nanopineo_Ubuntu_xenial_next_4.14.14.7z
Armbian_5.38_Nanopineo_Ubuntu_xenial_next_4.14.14.img
Armbian_5.38_Nanopineo_Ubuntu_xenial_next_4.14.14.img.asc
```

展開したら、インストール PC へ microSD カードを挿入して、Etcher で image (raw ファイル) を microSD カードヘコピーします。

USB-シリアルケーブルがない場合はコピー後に SD カードをマウントさせて、 etc/Network/interfaces を書き換えて IP アドレスを静的に設定してしまう作業をしておくと初 回起動時から ssh 接続可能です。

microSD カードへ image を書き終わったら、Nano Pi NEO へ SD カードを挿入し、AC アダプ ターを接続して電源を投入します。LED 点灯し始めたら、USB-シリアルケーブルを PC へ接続し、PC から screen などでシリアルコンソールをとります。

\$ sudo /bin/bash -c 'LANG=C screen /dev/ttyUSB0 115200 -L'

初回は root でログインします。パスワードは 1234 です。ログインに成功すると、root のパスワー

^{*3} https://lkml.org/lkml/2018/3/3/122

^{*4} https://etcher.io/

^{*&}lt;sup>5</sup> 例えば https://www.switch-science.com/catalog/1196/の様なものです。

^{*6} http://docs.armbian.com/

ド変更を求められますので任意のものを入力します。その後一般ユーザーの作成を求められるので任意 のユーザー名とパスワードを入力します。上記の作業は必須です。なお、この時に作成する一般ユー ザーは uid 1000 で、同時に作成される同名の gid 1000 なグループに所属しています。また、sudo グループにも追加されているため追加作業なしで sudo コマンドが実行可能です^{*7}。今後は root では作 業せず、root を「passwd -l」でロックして一般ユーザーのみで作業したほうがセキュリティ的にもよ いでしょう。

コンソールが取れるようになったら、PX-S1UD が USB デバイスとして見えているか lsusb コマン ドで確認します。lspci して "VidzMedia Pte Ltd" が見えれば正しく PX-S1UD が USB デバイスと して見えています。そうでない場合は変換アダプタの接続が正しくできているか等物理的な接続を確認 します。

\$ lsusb | grep Vidz
Bus 003 Device 005: ID 3275:0080 VidzMedia Pte Ltd
Bus 003 Device 004: ID 3275:0080 VidzMedia Pte Ltd

確認ができたら最低限の OS セットアップは完了です。筆者は以下の作業も併せて実施しました。

- ・パッケージのアップデート
 - ネットワークにさえ繋がっていれば「sudo apt upgrade」でアップデート可能です
- ・ IP アドレスの固定化
- ・ntp クライアントのインストールと設定
- ・タイムゾーンの設定(UTC → JST)

4.4 PX-S1UD の初期設定

armbian のインストールと初期設定が完了したら、PX-S1UD を使用するために必要な初期設定を 実施していきます。基本的には x86_64 マシンでの手順と全く同じです。

armbian には DVB 版の PX-S1UD 用ドライバ(smsusb、smsmdtv)がデフォルトで組み込まれ ていますので、ドライバのインストール作業は不要です。

\$ Lsmod | grep smsusbsmsusb16384 0smsmdtv40960 2 smsdvb,smsusb

ファームウェアに関しては組み込まれていないため、Windows 版のものから抜き出して /lib/firmware へ設置します。

```
$ wget http://plex-net.co.jp/plex/px-s1ud/PX-S1UD_driver_Ver.1.0.1.zip
$ unzip PX-S1UD_driver_Ver.1.0.1.zip
$ sudo cp PX-S1UD driver Ver.1.0.1/x64/amd64/isdbt rio.inp /lib/firmware/
```

一度 reboot して、/dev/dvb/adapter[0-9]/が存在していることを確認します。

\$ ls -1 /dev/dvb/adapter0/ demux0 dvr0 frontend0 \$ ls -1 /dev/dvb/adapter1/ demux0 dvr0 frontend0

^{*&}lt;sup>7</sup> Ubuntu のインストール時に追加する一般ユーザーと同じです。

第5章 いつでも始められる mpv

kazken3(@kazken3)

暖かい春も過ぎ、こころ穏やかな日々もつかの間、暑さを感じられる季節が近づいてきました。そんな日々ではありますが、最近良くなってきたと感じている mpv を試してみました。^{*1}

5.1 mpv って?

mpv^{*2}は、MPlayer から fork された mplayer2^{*3}をもとに作られた、マルチプラットフォームのメ ディアプレイヤーです。デコードライブラリとして FFmpeg^{*4}を標準で利用し、現在もアクティブに開 発が行われています。

トップページも特徴が挙げられていますが、筆者としては次の内容が特徴的だなと思っています。

- OSC*5
- ・高品質のビデオ出力
- ・FFmpeg を利用した GPU ビデオデコード
- ・ショートカットがわかりやすい

5.2 インストール

mpv は universe^{*6}にあり、インストールは簡単です。

\$ sudo apt install mpv

引数なしで起動すると、オプションが表示されます。Ubuntu 18.04 LTS の場合はバージョン 0.27.2 がインストールされます。

```
$ mpv
mpv 0.27.2 (C) 2000-2017 mpv/MPlayer/mplayer2 projects
built on UNKNOWN
ffmpeg library versions:
                   55.78.100
   libavutil
                   57.107.100
   libavcodec
                   57.83.100
   Libavformat
   libswscale
                   4.8.100
                   6.107.100
   libavfilter
   libswresample
                  2.9.100
ffmpeg version: 3.4.2-2
         mpv [options] [url|path/]filename
Usage:
Basic options:
                   seek to given (percent, seconds, or hh:mm:ss) position
 --start=<time>
                   do not play sound
 --no-audio
                   do not play video
 --no-video
 --fs
                   fullscreen playback
 --sub-file=<file> specify subtitle file to use
```

^{*1} 季節が変わったので挨拶も変えた…

^{*2} https://mpv.io/

^{*&}lt;sup>3</sup> mplayer2 はすでに開発は停止しています。

^{*4} libav も利用可能ですが ffmpeg が妥当でしょう。

^{*&}lt;sup>5</sup> オンスクリーンコントローラ。画面上にマウスオーバすると表示されるちいさな GUI です。

^{*&}lt;sup>6</sup> Ubuntu 14.04 LTS から universe で提供されています。

--playlist=<file> specify playlist file

--list-options list all mpv options --h=<string> print options which contain the given string in their name

「mpv --list-options」で更に細かいオプションを確認することができます。カスタマイズを行う際 に参考になるでしょう。

5.3使ってみよう

5.3.1 再生

基本は、ファイル名を指定すれば再生することができます。再生できるフォーマットは FFmpeg で 再生できるものはすべて再生できると考えて良いでしょう。

\$ mpv movie.mp4

図 5.1: mpv 再生画面

超簡単ですね。*7

5.3.2 ショートカットを使おう

OSC が提供する UI によって、ある程度の GUI 上での利用も可能ですが、mpv ではショートカットを利用することでさらに柔軟な再生を行うことができます。デフォルトでは、ヘルプ⁸にある動作となりますが、次に代表的なものだけ挙げておきます。

^{*7} This movie has been licensed under the Creative Commons Attribution 3.0 license(CC BY 3.0).

^{*8} https://mpv.io/manual/master/#interactive-control

+-	機能
右左矢印キー	5 秒単位で早送り/早戻し。 Shift キーを併用すると1 秒単位で行う。
上下キー	1 分単位で早送り/早戻し。 Shift キーを併用すると 5 秒単位で行う。
[] +-	再生速度を 10% 減らす/増やす
{}+-	再生速度を半減/倍増
バックスペースキー	再生スピードをリセット
p またはスペースキー	ポーズ(再度押すと再開)
.+-	ステップ再生。押すたびに1フレーム再生しポーズ
,+-	ステップ戻し。押すたびに1フレーム戻しポーズ
q +	終了
Qキー	終了位置を記憶して終了。同じファイルを再生するときに終了位置から再生
/、 *キー	ボリュームを減らす/増やす
9、0キー	ボリュームを減らす/増やす
m +	音声をミュート
f キー	フルスクリーンモード切り替え(トグル)
ESC キー	フルスクリーンモード終了
Tキー	常に最前面に切り替え(トグル)
1+-	A-B ループポイントの作成/クリア
L	ループ再生(トグル)
Ctrl++、 Ctrl+-キー	映像と音声のずれを 0.1 秒単位で調整する
S キー	スクリーンショットを取る
Ctrl+s キー	現在のウィンドウサイズでスクリーンショットを取る
d +-	インタレースの ON/OFF
Aキー	アスペクト比のサイクル切り替え
1、2キー	コントラスト調整
3、4キー	輝度調整
5、6キー	ガンマ調整
7、8キー	彩度調整
Alt+0 キー	映像をオリジナルサイズの半分にリサイズ
Alt+1 キー	映像をオリジナルサイズにリサイズ
Alt+2 キー	映像をオリジナルサイズの2倍にリサイズ

ある程度、英語とくくりついていたりするのでわかりやすいと思いますが、キーバインドの好みもあ るかと思います。次節ではキーバインドの変更も含めたカスタマイズについて触れます。

5.4 カスタマイズ

5.4.1 設定のカスタマイズ

mpvの設定はキーバインド(次項で触れます)を除き、/etc/mpv.conf がシステムワイドの設定と なります。設定を変更したい場合は~/.config/mpv/mpv.confを作成しファイルを変更することで、設 定をオーバーライドすることができるため、システムワイドの設定を汚すこともなく設定ができます。 パッケージからインストールした場合は、/usr/share/doc/mpv にでテンプレートとして利用できる mpv.conf がありますので、まずはそれを展開してコピーします。

\$ mkdir -p ~/.config/mpv \$ cd ~/.config/mpv \$ zcat /usr/share/doc/mpv/mpv.conf.gz > mpv.conf \$ vi mpv.conf

筆者の場合、次の設定⁹をデフォルトから変更しています。詳細は OPTION¹⁰の欄を確認しなが

⁴⁹ HW エンコーダーの設定はデフォルトでは auto ですが、筆者の Sandy Bridge の環境では起動時に「libvdpau_i965.so が無いんですよ」ってエラーが出ているため明示的に vaapi を指定しています。ただしこの設定の有無よる再生時の差は 筆者の環境では出てないので、結果としては精神衛生上入れてる感じですね。

^{*10} https://mpv.io/manual/stable/#options

第6章 らくごうさんちのノート PC 事情

Rakugou

今まで頑張ってきた Let's note から新しいノートパソコンへ移行することになりましたので、その備忘録です。

6.1 最近の Let's note

ざっぱ~ん♪ vol.3⁻¹にて Let's note の 2in1 タブレットとして (無理やり)使用する方法を紹介し ました。執筆当時 (Ubuntu のバージョンは 14.04 LTS) はディスプレイを折りたたんでラップトッ プモードからタブレットモードに移行する際、タブレットモードの状態でキー入力することができませ んでした。そのため、あらかじめラップトップモードで Onboard を起動してからタブレットモードに 切り替えるという手法を取っていましたが、17.10 で試してみたところこの作業が不要となりました。 キーボードを出現させる方法も至って単純で、画面下から上へスワイプするだけというものです。フ リック入力には対応しておりませんが、10 インチ超のディスプレイでは両手親指でタップするのに十 分な広さがあります。タブレットモードでは基本的に電子書籍の閲覧など、入力を伴う作業を基本的 には行わないことが想定されます。そのため、スマートフォンではフリック入力を常用する筆者でも、 QWERTY 配列だけで十分ではないかと思います。

図: キーボードを出したときの様子。スクリーンショットが撮れなかったので写真を撮影することに なった。

また、タブレットモードからラップトップモードに戻す際にサスペンド状態になっていましたが、

^{*1} http://zapppaaan.freepub.jp/article/156663726.html

Ubuntu 17.10 ではそのような現象は見られませんでした。このため、タブレットモードとしてはざっ ぱ~ん♪ vol.3 の当時よりはかなり使いやすくなっています。2in1 のノートパソコンの種類が増えて きているので、他のノートパソコンに Ubuntu をインストールさせる後押しになるのではないでしょ うか。

6.2 ノートパソコンを買い替えた

長らく使用していた Let's note ですが、バッテリがある頃から急激に減少して電池切れになってし まうことがありました。加えて電源レバーをスライドさせてもなかなか起動しないことが度々あったた め、HP の Elitebook Folio G1⁻²に買い換えました⁻³。決め手はキータッチの良さと、1kg を切る重 量、何より USB Type-C での給電になるため、筆者が持っている Zenfone 3 と同じ充電ケーブルを 使用することができます。そのため、意外とかさばるノートパソコン用専用 AC アダプタを外出先へ 持っていく必要がなくなります。

そして、Ubuntu Weekly Recipe 第432回^{r4}にてロードテストが公開されていた機種なので、先人 がいると購入のための心理的障壁は格段に下がります。なかなか高価な買い物なので、「いざ買ってみ たけれど全くもって使えなかった」という場合の心理的喪失は計り知れません。とはいえ、この発想が チキンレースにつながりかねず、新しめのノートパソコンを購入するための判断材料が生まれにくいと いうジレンマも抱えていますが。

6.3 右クリックができない

Ubuntu 18.04 LTS をインストールして軽く操作してみたところ、タッチパッドの右下方の押下で 右クリックができないことが判明しました。タッチパッドの設定確認も行ってみましたが、主ボタンし か認識しないようです。なお、二本指でタップすると、右クリックと同じ動作になります。

また、タッチパッドのボタン押下時間の長さで主ボタンと副ボタンの機能切り替えのタイミングを 調節する場合、[設定] から [ユニバーサルアクセス] → [クリック支援] をクリックします。すると、メ ニューが表示されるので、[副ボタンのクリックの代替] をオンにします。どれだけ長く押すことにより 副ボタンのクリックの代替をさせるかは、認識するまでの間隔を調節するレバーで調節します。個人的 な感覚ですが、一番短くしても「普通に右クリックしたつもりだったのに」ということにはならないと 感じました。

クリック支援	8
副ボタンのクリックの代替(S) 主ボタンを押したままにすると副ボタンのクリックとみなす 認識するまでの間隔(C): 短い 長い	オン
ホバークリック(H) ポインターの移動を停止したらクリック動作を行う	77
認識するまでの間隔(E): 短い	

図: 副ボタンのクリック代替のメニュー

*4 https://gihyo.jp/admin/serial/01/ubuntu-recipe/0432

^{*2} http://jp.ext.hp.com/m/notebooks/business/elitebook_folio_g1/#contents_model

^{*3}入れ替えられたLet's note は、致命的な不具合はないため、Windows に入れ替えて引き続き頼もしく稼働していただ く予定です。

6.4 Type-C から映像端子への変換

Ubuntu Weekly Recipe では、USB Type-C 端子ではは USB メモリの認識のみで、映像系の端 子は認識できなかったとありましたが、18.04 ではどうなっているのでしょうか。今回 Type-C から 様々な機器を接続するためのハブとして、HP 純正のハブではなく、RayCue の USB ハブ⁵を選びま した。これにした理由は、映像系の端子を持つ Type-C の多機能ハブとしては 5,000 円を下回るお手 頃な価格であったからです。Elitebook で試してみたところ、HDMI 端子、VGA 端子いずれを使用し てもディスプレイに表示させることが可能でした。この 2 つの端子で接続可能であれば、外出先で映像 を投影する際にも、ほとんどの場合困ることはないでしょう。

1292 9861	THE NEW YORK			
e anex	*****			
8 #12764	7437648-6			
88 A-d'-F		and a second		
* NUXEROATION	60 marcia (L) re- (D)	Inghest Lat		
0 705#-	stipler Amerpaneer			
♦ UA=075.8917	Dreadeblez to mel dream setus. The top per is pleased on the primers deplet.			
5 53597699				
4 X2-				
	73479-8429-6	1 mionitales		
	Bullin Bryley, Louis Court-solari	m.u2P		
	10	414		
	69.8			
	9-728	80% 20%		
	17 Hard Scheele	Alakar		
1	HERE - (3)			

図:2画面表示が成功した

ケーブルが薄型で、折りたたんで本体下部に収納し、使わない時はコンパクトにできることもメリットですが、欠点としては、特に Elitebook で用いる場合に、USB Type-C の端子が右側にしかないため、取り回しが難しいところです。このように映像系の端子が後ろに、充電用 USB Type-C 端子が前に来ているので、手元の配線が散らかってしまうこともあるでしょう。

図: RayCue のハブを接続した様子。使用者側から見るとロゴが反転する。

ちなみに、たまたま原稿執筆中に入手した頂きものの ELECOM の USB ハブ⁶でも試してみました が、RayCue のハブと同様に HDMI 端子が認識します。こちらはノートパソコン側のケーブルの長さ がある程度あるので、パソコン周りをすっきりさせつつ各端末を接続することができます。

^{*&}lt;sup>5</sup> https://www.amazon.co.jp/dp/B074FWNSW8

^{*6} http://www2.elecom.co.jp/products/U3HC-DC03BBK.html

第7章 Ubuntu で心理学実験

はにゅう

ざっぱ~んに寄稿するのは初めてです。はじめまして。はにゅうと言います。関西某所で院生を しています。研究するにあたり、Ubuntu を使って実験環境を整えているので、今回は Ubuntu を使ってつくる実験環境のお話をしようと思います。初心者の方への助けになれば幸いです。

7.1 はじめに

わたしの専攻は(主に)認知心理学です。認知心理学の研究では、主に PC を用いた心理学実験を行います。心理学実験では、例えば、PC モニタにある文字が呈示されたら、できるだけ速く・正確に何かのボタンを押す、といったようなことを行います。わたしは、そうした行動の結果得られた、ボタンを押すまでにかかった時間(反応時間)・間違えた回答の回数・ある一方の反応に偏る確率などの数値データを見ることで、人間にどのようなしくみが備わっているのかを明らかにするのが、「心理学実験」だと考えています。

現代において、心理学実験の制御には PC が必須です。なぜなら、PC を用いれば、文字などの刺激 をいつ、どのような順番で、どれぐらいの輝度で呈示するのか、などの細かい条件指定に答えられ、0.0 何秒といった細かい時間をデータとして得ることができるからです。そういった実験の制御を行うに は、プログラムを組み立てなければいけません。

そこで役立つのが「PsychoPy」です。PsychoPyの導入方法に入る前に、PsychoPyとはそもそも 何なのか、なぜ Ubuntu を用いるのかをお話しようと思います。

7.2 PsychoPyとは

PsychoPy は、公式ホームページ¹では以下のように紹介されています(以下引用)。

PsychoPy is an open-source application allowing you run a wide range of neuroscience, psychology and psychophysics experiments.

It's a free, powerful alternative to Presentation(tm) or e-Prime(tm), written in Python(a free alternative to Matlab(tm)).

補足も入れて簡単に要約すると、

PsychoPyとは、Pythonという言語で動く、オープンソースのアプリケーションです。 PsychoPyでは、心理学実験、心理物理実験、神経科学に関する実験など、幅広い実験プログラムを簡単に組み立てることができます。

元々実験系心理学、神経科学の研究者の人たちは、主に Matlab という有償ソフトウェアを使っていました。その Matlab に代わるものとして、無償の PsychoPy が誕生しました。

というところでしょうか。

この説明の通り、PsychoPy は初心者の人でも簡単に実験を組み立てられる、優れものなのです。

ところで、PsychoPy は Python で動くのですが、Python は数値計算だけでなく、大切な文章を書 くのにも向いていますね。

なお、今回導入する PsychoPy は、ソフトウェアの方ではなく、実験・分析に必要なツールを集め たパッケージの方です。

^{*1} http://www.psychopy.org/

7.3 なぜ Ubuntu なのか

子供の頃、自分よりずっと年上の、親やお姉さんお兄さん、アニメやゲームの登場人物が使う、靴・服・扱う武器に、憧れたことはありますか。わたしは憧れました。なんだったら今でも……。とうーはんどがんず……。

真面目な理由としては、2つあります。

1 つは、Ubuntu は重くなりにくく、安定しているためです。人間のふるまいの指標を反応時間とす るような実験や、刺激の実際の呈示時間を制御することが必要な実験では、できるだけ精密なデータを 採ることが重要になります。ところが、データを採るとき、OSの挙動によって邪魔をされてしまった り、ノイズが入ってしまったりすることがあります。Ubuntu はその点、そういった邪魔が入ることが 少なく安定しているため、心理学実験を行うのに適している環境であると考えています。

もう1つは、Matlabに依存しないためです。もちろん Matlab オンリーでいくのを否定しているわ けではありません。Ubuntu で手軽に実験環境を整えることができれば、いつでもどこでも、自分の思 うがままに実験を行うことができます。これは、Matlabに依存していてはできないことだと考えてい ます。

7.4 実験環境の構築

それでは早速実験環境の構築を行いましょう。 今回用いたのは、Dell precision Tower 3420 で、Ubuntu のバージョンは 16.04 LTS でした。 PsychoPy インストールの際に導入するものは以下の通りです。

- ・ pyenv: 複数の Python のバージョンを管理することができるツール。
- anaconda: データ処理などに使われる Python のモジュールをまとめたパッケージ。簡易版も あります (miniconda)。

7.5 インストールの手順

7.5.1 pyenv をインストールする

Ubuntu はシステムの至るところで Python が使われているようで、素直にインストールすると、こ んがらがってえらいことになってしまいます。わたしはそのせいで GNOME-terminal が死にました。 めちゃくちゃ焦りました。

というわけで(?)、今回は pyenv の上に anaconda を導入します。

```
$ git clone https://github.com/yyuu/pyenv.git ~/.pyenv
$ echo 'export PYENV ROOT="$HOME/.pyenv"' >> ~/.bashrc
$ echo 'export PATH="$PYENV ROOT/bin:$PATH"' >> ~/.bashrc
$ echo 'eval "$(pyenv init -)"' >> ~/.bashrc
$ source ~/.bashrc
```

なお、anaconda と PsychoPy に必要な Python のバージョンは 2.7.14 です。何故 2 系なのかは 以下で述べています。Ubuntu 16.04 LTS の Python のバージョンは、2.7 と 3.5 の 2 つがあるよう です。

7.5.2 pyenv 上で anaconda をインストールする

ここで注意しなければいけないのは、導入する anaconda のバージョンです。導入する PsychoPy の関係で、3 系の anaconda を導入しても 2 系の anaconda に降ろされるので、2 系を導入します。 2 系の最新バージョンは一行目の結果で確認します。3 系を使いたい場合は、仮想環境で走らせること ができます。

また、仮想環境に入る際に用いる「activate」が pyenv と anaconda で衝突する場合があるので、 念の為、衝突しないように path に書いておきます。

7.5.3 PsychoPy を導入する

PsychoPy、何バージョンかありますが、cogsci psychopy を導入します。eric psychopy を入れ てみたりしましたが、わたしの環境でうまく行ったのは cogsci psychopy のみでした。

\$ conda install -c cogsci psychopy

以上で終了です! お疲れ様でした。

7.6 もしかしたら

PsychoPy の導入の際、入れていないはずの PsychoPy と、今から入れようとしている PsychoPy が衝突して入れられないよ! という状況に何度も遭遇しました。

はっきりとした原因の解明までは力がなくて行きつけなかったのですが、かつて (かつて) PsychoPy を「sudo apt-get install」で入れようとした(実際には導入をやめた)ことに起因していたよう です。

この手順でも導入できない場合は、「conda list」や「dpkg -l」、「vim ~/.bashrc」等のコマンド で、PsychoPy がどのような状況になっているかを確認し、パスがどこにいっているかを見てみてくだ さい。

7.7 デモコード

Hello world が順番で出てくるだけのデモコードです。次節以降で紹介する開発環境を使って、走ら せてみてください。PsychoPy を使って、こんな風にして実験プログラムを書いていきます。

```
from psychopy import visual, core
win = visual.Window([400,400])
me = visual.TextStim(win, text='hello')
me.setAutoDraw(True)
win.flip()
core.wait(1)
me.setText('world')
win.flip()
core.wait(1)
win.close()
core.quit()
exit()
```

それでは、楽しい心理学実験ライフを!

第8章 ゲストページ

8.1 国際イベントの招致を手伝ってみましたよ

おがさわらなるひこ

Ubuntu ユーザーな私が、なぜだか 2017 年 10 月 21 日、22 日に開催された 「openSUSE.Asia Summit」というイベントの東京招致をお手伝いすることになったりし たので、そのメモ書きなどをここに残しておこうと思います。別のディストリビューションのイ ベントですけど固有の話はそんなにないですし、FLOSS な国際イベントをホストするって体験 は皆様にも面白いかなと。あくまでも個人的な体験をダラダラ書いているだけなので、今すぐ役 立つノウハウ! みたいなのは期待しないでお読みくださいませ。

8.1.1 openSUSE.Asia Summit とは

openSUSE⁻¹について私は説明できるほど詳しくないですが、なんとなくヨーロッパ色が強いディ ストリビューションな気がしています。だからでしょうか。年に 1 度の opneSUSE のカンファレンス openSUSE Conference (oSC) はヨーロッパ (チェコのプラハだったかな?) で開催されています。 しかし、中国 (少なくとも北京) や台湾には SUSE のオフィスがある関係でユーザーもおり、日本に もアクティブに活動しているメンバーがいます。そういう人たちが相互に会って話せる場がヨーロッパ にしかないってのはなかなかつらいよね²、だから Asia カンファレンスをやろうよ! というモチベー

ションで開催されるようになったのが openSUSE.Asia というイベント……なんだそうです。 イベントそのものについての情報は公式ページ^{*3} もありますし、openSUSE な人によるレポート^{*4} や彼らによる同人誌^{*5} に招致レポートは載ってますし、まあこれぐらいにしておきますね。

8.1.2 私と openSUSE.Asia

ちょっと自分語りですけど。

FLOSS なデスクトップ環境である GNOME には GNOME.Asia⁻⁶ というイベントがありまして、 これもきっと似たような動機で開催されてるイベントだと思うんですけど。なんとなくネット見てたら このイベント見つけて、そのときはたまたま 2014 年で北京開催だったんですけど、北京だったら近い じゃんって思って遊びに行ったんですね⁻⁷。

そしたら、そこで SUSE 北京オフィスの人たちがブースを出していて、「日本から来たの? 日本にも openSUSE でアクティブに活動してる人いるでしょう、知ってる?」「うん、もちろん知ってるけど」 「今年、Asia カンファレンスをやろうって思ってるの、北京で。だから一緒に手伝ってくれない? くれ るよね?」「え、うん、まあ、それはできることなら手伝いますよ」みたいになって。

手伝うといってもときどき口を出す(そして当日参加する)レベルで、本当に頑張ってたのは日本 openSUSE ユーザ会の武山さんなんですけど、まあ、なんにせよ、始めることは大事だし、初回の openSUSE.Asia Summit 2014 に立ち会えたのは誇らしくも嬉しかったりしました。

^{*1} https://ja.opensuse.org/

^{*2} 私が主に活動している LibreOffice についても年次カンファレンスは基本的にヨーロッパで行われており、ここらへんの 事情には親近感があります。

^{*&}lt;sup>3</sup> openSUSE.Asia Summit 2017 Tokyo https://events.opensuse.org/conference/summitasia17

^{*&}lt;sup>4</sup> openSUSE.Asia Summit 2017 イベントレポート by 橋本修太 http://blog.geeko.jp/syuta-hashimoto/1671 な お Geeko Blog には 2016 年以前のレポートも掲載されてます。

^{*5} Geeko Magazine Special Edition 2017 冬 http://blog.geeko.jp/ftake/1692

^{*&}lt;sup>6</sup> 今年のページ https://2018.gnome.asia/ 今年は台湾で開催。台湾最大の FLOSS イベント COSCUP と、さらに openSUSE.Asia とも併催です。

^{*&}lt;sup>7</sup> このとき RMS が基調講演に来てて、FSF のステッカー貰いに行ったんだけど緊張のあまり話しかけられなかった……という話は、まあおいといて。

引き続き 2015 年の台湾では、武山さんの頑張りもあって日本からの参加者も増えて、その翌年はインドネシアはジョグジャカルタで、これも日本から何人か参加して、私は行かなかったんだけどものすごい熱気だったらしく^{*8}、そこのクロージング LT で「来年は東京だ!」ってやったら大盛り上がりだった、って話を聞きまして。

「で、東京に招致しようって話があるんですけど、どう思います?」と聞かれたのが 2016 年の秋、 インドネシアのイベントが終わってからしばらく経ってだと思います。

「うーん、GNOME.Asia のときも、次は日本でやろうぜってみんなに言われたし日本でやれば来た いって人多いと思うんだけど、正直、傍から見てる今の日本の openSUSE コミュニティの体力でやる のは相当きついんじゃないかな? ただ、背伸びしてでもイベントやらないとコミュニティに体力がつ かないって考えはあると思うし、やるというなら、できる範囲で手伝いますよ」と返事をしたような気 がします。

8.1.3 助走期間

記録をたぐると 2016 年 10 月には、日本 openSUSE ユーザ会の slack に専用のチャンネルができ て、11 月 2 日にキックオフ的な会合をやってますね。

やるなら手伝いますよって人がまあまあ集まって、これまでの実績で各国から日本に来そうな人数 と、日本の openSUSE およびその周辺コミュニティの人間を数えると、集客 100 人ぐらいはできる のかなあって感じになって、それならやりますかって温度感になっていったと思います。中国の重慶が GNOME.Asia の招致を決めて、それと併催って情報が入ってきたので、ただ提案出せば OK というわ けでもないし、このイベントとコラボできないかとかあそこの場所使えないかとか思いつきを話したり してた時期ですね。

2月中旬ぐらいまでは割とチャットも活発だったけど、そこからしばらく停滞期があって、3月中旬 にグローバルのほうで CHF (Call for Host; 開催地募集)の日程が「4月いっぱい」と決まって、ま た動き出したという感じ。

8.1.4 CFH Proposal 作成

で、CFH に出す Proposal(提案書)づくりが本格化。 openSUSE.Asia Summit の場合、Proposal に書く内容はおおむね次のとおりでした。

- ・なぜそこで(今回は東京)開催するのか。その意義は
- ・場所
- ・日程
- 大まかなプログラム(講演が何トラックあって、何人が発表できて、ワークショップの開催の可 否、などなど)
- ・予算
 - 支出:なににいくらぐらい必要か
 - 収入:イベント自体や懇親会を有償化するならそれ、あと日本チームで集められそうなスポ ンサー
- ・現地への交通手段
- おすすめホテル(ざっくりとしたコスト)
- ・食事

決めごととして一番大きいのは、まずは場所と開催日程なんですね。これが決まらないと色々書きよ うがない。

・少なく見積もって100人が収容できて

^{*8} ジョグジャカルタは JICA の支援によって初等教育の E ラーニングシステムに openSUSE を入れているそうで、それも あってインドネシアは若い人たちに Linux、FLOSS に関心がある層が多いんだそうです。

- オープニング・キーノート・クロージングでは全員入れる部屋があって
- ・数トラック並列で講演をできて
- ・さらに並列でハンズオンが実施できて
- お金があんまりかからなくて^{*9}
- ・4月の時点で10月の予約ができて
- ・万が一、CFH で他の候補地に負けたら無償で(or 安価で)キャンセルできること

これらの条件を満たす場所を探さなければいけない。

予算の都合で有償のイベントスペースは NG。予約の関係で公共系施設は難しい。となると学校系なんですが、学校系はけっこう制約がおおくて、正面からお願いすると断られることも多くてですね……。

どうも決め手にかけて困っていたら、IBM の Bluemix な人脈から、電気通信大学を紹介してもらい ました。内部のベンチャー企業¹⁰ を通すので手続き的には問題ないと。で、確定したのが 4 月 16 日。 今から思い返すとギリギリだな……。ということで、まずは場所抑えるってことを意識したほうがいい と思います。

あと大変というか面倒だったのは予算ですね。ただ、これについては私あまり関わってないので割愛。 Proposal は全体を通して、大雑把に担当を決めて、Google Docs 上で直接編集して作成していき ました。みんながみんな英語が得意ではないので(私も)、書きたい思いがある人に日本語で書いても らって、それを別の人が英語にしたり。オンラインだとなかなかうまく進まないこともあるので、作業 日を用意して一気に進めることも大事ですね。

英語については、カジュアルな言い回しを好む人、かっちりした言い回しを好む人の違いなんかもあ りましたが、ここは最終的には、リーダーの武山さんの感覚に揃えることになりました。Google 翻訳 を日→英、英→日と二回かけて意味が通るかチェックしたり、文法チェッカ Grammaly¹¹ を利用した りも大事。

そんなわけで書き上げた CFH Proposal を PDF 化して実行委員にメールで送付。つかれたー。

で、重慶と決選投票の結果、大量リードで東京採択。我々のライバルでなければ、重慶のプロポーザ ルも魅力的だったんですけどねえ。まーともかくめでたしめでたし。一息つく間もなく、実際の準備に 追われることになります。

……このペースで書いていると終わらないので、以下、私が関わった中で特筆すべきことに限ります。

8.1.5 インフラなど

主に日本ローカルチームで使ったインフラは、日常の会話:slack、作成した文書やファイルの置き場:Google Drive、タスク管理:Trello です。外部からのメールの受け口は google groups を利用 しました。基本的には独自のインフラを持たない方向でやってました。

定例ミーティングはビデオチャットでやったのですが、20人を超えるメンバーをさばける、2時間 程度の連続したミーティング可能、携帯からも利用可能、画面共有ができるということで、最終的に は Google さんの有償サービス、Hangout Meet に落ち着きました(代金は予算から充当)。当時は Discord は画面共有がいまいちとのことだったのですが今はどうなんだろ。

グローバルも定例が slack でタスク管理は Trello ですね。後述のロゴコンテストのサイトは、北京 コミュニティが作成したツールをインドネシアチームがホストして立ててくれました。

イベントのメインページや後述 CFP は、openSUSE コミュニティが開発している OSEM¹² とい うオープンソースを用いたサーバーがグローバルで立っておりそれを用いました。参加登録は、日本国 内での認知度などを考えて connpass を用いたのですが、OSEM にも参加登録機能があるので「なん で使わないの」って Board にチクリと言われたりしました。納得はしてもらいましたけど。

^{*9} 言語系のカンファレンスのように数万円のチケットを売っても即日完売するような、あるいはスポンサーをかき集められる見込みがあればいいんでしょうけど、まあそこは守るしかなかったです。

^{*10} http://www.usa-mimi.jp/

^{*&}lt;sup>11</sup> https://www.grammarly.com

^{*12} https://github.com/openSUSE/osem

「うぶんちゅ! まがじん ざっぱ〜ん♪」 バックナンバー

表紙 瀬尾浩史 発行) プチ帰ってきた『行っとけ! Ubuntu 道場!』 特別編 hito Ш Ubuntu で作るおうち録画環境 kazken3 15 Unity から自由を奪還せよ 柴田充也 Ш これで完璧!! Ubuntu で印刷 again! おがさ Ш わらなるひこ Enju Leaf でつくるオレオレ蔵書管理サー 年 バ長南浩 (2013 (2014)Ubuntu マシンで艦これを動かして遠隔プ レイできる環境を作ってみた 鶴ノ子餅すあま SD 連載 Ubuntu Monthly Report におけ る動物の変遷 SoftwareDesign 編集部 金田冨士男 vol This is me, with Ubuntu. おしえたかし うぶんちゅ まがじん ざっぱーん Vol.01 発 刊おめでとう 水野源 Ubuntu と私 あわしろいくや 終わりに あわしろいくや 価格:500円 販売サイト・体験版: http://zapppaaan.freepub.jp/article/82821893. html 表紙 写真:水野源 発行 OpenNebula で PCI passthrough おおた あきひこ Ш Ш Let's note CF-RZ4 に Ubuntu をインス 25 30 トールしてみる話 Rakugou m 21 世紀の Device Tree 柴田充也 Ш ちょーなんさんちのノート PC 事情 長南 浩 玊 年 かよちんとボクと、時々、録画 kazken3 0162

ちょーなんさんちのノート PC 事情 長南 浩 かよちんとボクと、時々、録画 kazken3 磁気センサーを使った冷蔵庫監視システム の構築 水野源 新し目の Mozc をビルドする あわしろいくや 著者紹介 編集後記 あわしろいくや 価格:700 円 販売サイト・体験版:

http://zapppaaan.freepub.jp/article/ 156663726.html

表紙 Ubuntu 4.10 プチ帰ってきた『行っとけ! Ubuntu 道場!』 特別編 第二回 hito あのプロダクトは今!? 柴田充也 Ubuntu を「未来をうかがう」道具にする 長南 浩 普通の社会人が【録画環境】を(もう少し) やってみた kazken3 Ubuntu 10 歳、CUPS 15 歳 おがさわらなる ひこ Ubuntu 14.04/14.10 でも ATOK X 3 を動 かす あわしろいくや Ubuntu Studio フレーバー 7 周年 坂本 貴史 Ubuntu で Blink(1) mk2 を動かしてみる kazken3 Ubuntu8.04 はこんなだった あわしろいくや 人と Ubuntu と私 芝田 静間 第二弾おめでとうございます Ueno 私が愛してきた OS 達 長南浩 普通の大学教員が【Ubuntu】やってみた。 おしえたかし 終わりに あわしろいくや 価格:700円 販売サイト・体験版: http://zapppaaan.freepub.jp/article/ 105631657.html 表紙 イラスト:よかぜ **艦これで学ぶ通信傍受入門** 柴田充也 お得でおいしい SSL 証明書のとりかた 長南 浩 Xymon Maniax Hajime MIZUNO **Ubuntu** と知の巨象、Evernote との共存を めぐって Rakugou Ubuntu GNOME の再インストールと棚卸 し あわしろいくや Blu-ray を Ubuntu で観よう kazken3 海外カンファレンスの楽しみ おがさわらなる ひこ 著者紹介 記録に残るものが記憶に残るもの~あとが きに代えて~ あわしろいくや 価格(Gumroad):500円 価格 (DLsite): 756 円 販売サイト・体験版: http://zapppaaan.freepub.jp/article/ 173095293.html

表紙 イラスト:よかぜ 表紙 イラスト:よかぜ 続 OpenNebula で PCIpassthrough おお 発刊に寄せて あわしろいくや たあきひこ Ubuntu を「未来をうかがう」道具にする Ш Ш snap パッケージを作ってみよう kazken3 長南 浩 6 HummingBoard/PT3 でつくる小型録画べ 21 世紀の Device Tree 柴田充也 Ш **正** アボーン ryunuda Xymon Maniax Hajime MIZUNO 4 8 Cinnamon のおかしな翻訳にツッコミを入 snap パッケージを作ってみよう kazken3 Æ 年 れる あわしろいくや HummingBoard/PT3 でつくる小型録画べ 9 Ubuntu 16.04 と Windows 10 でデュアル アボーン rvunuda ブート Rakugou LibreOffice Online で遊んでみよう おがさ LibreOffice Online で遊んでみよう おがさ わらなるひこ 関係者より一言 わらなるひこ あとがき あわしろいくや 価格(Gumroad・BOOTH):700円 著者紹介 価格 (DLsite): 972 円 販売サイト・体験版: 価格(Gumroad・BOOTH):700円 価格 (DLsite): 972 円 http://zapppaaan.freepub.jp/article/ 販売サイト・体験版: 179274130.html http://zapppaaan.freepub.jp/article/ 176563093.html 表紙 イラスト:よかぜ 表紙 イラスト:よかぜ OpenNebula Private OpenNebula で Nextcloud サーバー構築 の MarketPlaceApp おおたあきひこ おおたあきひこ Ш П いかにして翻訳(ほんやく)をするか 柴田 サーバーレスでオレオレ画像アップロー 6 ダーを作る 水野源 充也 Ш BuildStream で GNOME アプリをビルド Ubuntu 音楽再生アプリ探訪 長南 浩 Ш 2017 年の Ubuntu 録画環境 kazken3 2 柴田充也 年 LibreOffice 6.0 Writer で縦書き小冊子を Cyclograph で GPS を使わず自転車ライフ 2018 作成する あわしろいくや ログ Rakugou Docker のアプリコンテナとして Re:VIEW Ubuntu を macOS High Sierra 風に変え を動かそう 柴田充也 てみる。Rakugou ഗ Ubuntu で血迷ってアダルトサイトを作っ ざっぱ~んを支える技術:ダウンロード編 柴 てみた話長南浩 田充也 特別コラム あわしろいくや Flatpak で Ubuntu 16.04 LTS 時代の 著者紹介 gedit をよみがえらせよう あわしろいくや 価格(Gumroad・BOOTH):700円 あとがき あわしろいくや 価格 (DLsite): 972 円 著者紹介 販売サイト・体験版: 価格(Gumroad・BOOTH):700円 価格 (DLsite):756 円 http://zapppaaan.freepub.jp/article/ 販売サイト・体験版: 179274142.html http://zapppaaan.freepub.jp/article/ 182391181.html

うぶんちゅ! まがじん ざっぱ~ん♪ vol.8【体験版】

2018 年 6 月 24 日 v1.0 発行 著 者 team zpn 発行所 team zpn

(C) 2018 team zpn

- Ubuntuではじめる楽しいゼミ運営
- ●ポメラDM200にUbuntuをインストールする
- Boomagaを使ってPDFを小冊子印刷する方法
- Nano Pi NEOで作成するテレビ視聴環境
- いつでも始められるmpv
- ●らくごうさんちのノートPC事情
- Ubuntuで心理学実験
- ●国際イベントの招致を手伝ってみましたよ
- 技術書典4で冊子版
 『ざっクリわかるUbuntu 18.04 LTS』
 を頒布できなかった顛末

